

ESKİŞEHİR OSMANGAZİ UNİVERSİTY FACULTY OF ENGINEERING and ARCHITECTURE

ELECTRICAL and ELECTRONICS ENGINEERING DEPARTMENT

COURSE INFORMATION FORM

Course Name				Course Code	
PHYSICS II LAB				151222199	
Semester	Number of Cours Theory	e Hours per Week Practice	Credit		ECTS
2	0	2			2
Course Category (Credit)					
Basic Sciences	Engineering Sciences	Design	Genera	l Education	Social
2	0	0		0	0

Course Language	Course Level	Course Type
English	Undergraduate	Compulsory

Prerequisite(s) if any			
Objectives of the Course	se If, hence, enhancing the students' perception and understanding on the important concepts and fundamental laws of electricity and magnetism. Numerical analysis and error calculation, fundamental measurements and Ohm's law,		
Short Course Content			

	Learning Outcomes of the Course	Contributed PO(s)	Teaching Methods *	Measuring Methods **
1	To enhance observational and analytical skills.	1, 2, 11	13	С
2	Make measurements with common instruments.	4, 5	3	Ι
3	To analyze quantitative information and errors.	5, 6	15	Е
4	To represent experimental data by using graphics.	2, 5	15	Е
5	To compare experimental results with mathematical and physical models, hence make an interpretation.	5	8	Е
6	Prepare a lab report.	1, 2, 4, 5, 6	15	Е
7	Develop teamwork skills	6	12	C, E, I, K
8	Running essential measurement devices such as voltmeter, ammeter, signal generator, and oscilloscope. Comprehend the working principles of circuit components. Understanding the pivotal relationship between electricity and magnetism.	1, 2, 4, 5	3	A, I
9	Encourage the curiosity for physics and improve the ability to apprehend the solid correlations between physics and engineering applications.	1	11	Ι
10	To obtain knowledge and experience on building basic experimental set ups upon need.	2, 3, 4	3, 6, 10	Ι

*Teaching Methods 1:Expression, 2:Discussion, 3:Experiment, 4:Simulation, 5:Question-Answer, 6:Tutorial, 7:Observation, 8:Case Study, 9:Technical Visit, 10:Trouble/Problem Solving, 11:Induvidual Work, 12:Team/Group Work, 13:Brain Storm, 14:Project Design / Management, 15:Report Preparation and/or Presentation

**Measuring Methods A:Exam, B:Quiz, C:Oral Exam, D:Homework, E:Report, F:Article Examination, G:Presentation, I:Experimental Skill, J:Project Observation, K:Class Attendance; L:Jury Exam

Main Textbook	Physics II Experiments Laboratory Book, Eskişehir: Eskişehir Osmangazi Üniversitesi Yayınları, Sertaç Eroğlu, Murat Kellegöz, Gökhan Kılıç, Halil Yasin Adıyaman
Supporting ReferencesHalliday, D., Resnick, R., and Walker, J. (2008). Fundamentals of Physics (8th F John Wiley & Sons, Inc. Serway, R.A., Beichner, R.J., Serway, R.A., Beichner, R.J., Physics For Scientists and Engineers with Modern 	
Necessary Course Material	

	Course Schedule
1	Introduction to laboratory, and formation of lab groups.
2	Electrolysis experiment.
3	Basic measurements and Ohm's Law Experiment.
4	Ohm's Law experiment
5	Wheatstone Bridge experiment
6	Equipotential and electric field lines experiment
7	Equipotential and electric field lines experiment
8	Mid-Term Exam
9	Magnetic force experiment
10	Biot-Savart Law Experiment
11	Transformers experiment
12	Resonance in Wire experiment
13	Resonance tube and standing waves experiment
14	Resonance tube and standing waves experiment
15	Make up experiment, general review and preparation for final exam.
16,17	Final Exam

^{*}Teaching Methods 1:Expression, 2:Discussion, 3:Experiment, 4:Simulation, 5:Question-Answer, 6:Tutorial, 7:Observation, 8:Case Study, 9:Technical Visit, 10:Trouble/Problem Solving, 11:Induvidual Work, 12:Team/Group Work, 13:Brain Storm, 14:Project Design / Management, 15:Report Preparation and/or Presentation

^{**}Measuring Methods A:Exam, B:Quiz, C:Oral Exam, D:Homework, E:Report, F:Article Examination, G:Presentation, I:Experimental Skill, J:Project Observation, K:Class Attendance; L:Jury Exam

Calculation of Course Workload				
Activities	Number	Time (Hour)	Total Workload (Hour)	
Course Time (number of course hours per week)	14	2	28	
Classroom Studying Time (review, reinforcing, prestudy,)				
Homework				
Quiz Exam				
Studying for Quiz Exam				
Oral exam				
Studying for Oral Exam				
Report (Preparation and presentation time included)	10	2	20	
Project (Preparation and presentation time included)				
Presentation (Preparation time included)				
Mid-Term Exam				
Studying for Mid-Term Exam				
Final Exam	1	2	2	
Studying for Final Exam	1	10	10	
	Т	otal workload	60	
	Total	workload / 30	2	
	Course	ECTS Credit	2	

Evaluation				
Activity Type	%			
Mid-term				
Quiz				
Homework				
Report	50			
Final Exam	50			
Total	100			

^{*}Teaching Methods 1:Expression, 2:Discussion, 3:Experiment, 4:Simulation, 5:Question-Answer, 6:Tutorial, 7:Observation, 8:Case Study, 9:Technical Visit, 10:Trouble/Problem Solving, 11:Induvidual Work, 12:Team/Group Work, 13:Brain Storm, 14:Project Design / Management, 15:Report Preparation and/or Presentation

^{**}Measuring Methods A:Exam, B:Quiz, C:Oral Exam, D:Homework, E:Report, F:Article Examination, G:Presentation, I:Experimental Skill, J:Project Observation, K:Class Attendance; L:Jury Exam

	RELATIONSHIP BETWEEN THE COURSE LEARNING OUTCOMES AND THE PROGRAM OUTCOMES (PO) (5: Very high, 4: High, 3: Middle, 2: Low, 1: Very low)			
NO	PROGRAM OUTCOME	Contribution		
1	Adequate knowledge of mathematics, science and Electrical and Electronics Engineering; ability to practice theoretical and practical knowledge of these areas into modeling and solving problems of Electrical and Electronic Engineering	5		
2	Ability to identify complex engineering problems in Electrical and Electronics Engineering and related fields, for this purpose having skills to formulate, select and apply appropriate methods.	5		
3	Having skills to apply modern design methods to design a complex system, equipment or product that should work under realistic conditions and constraints and satisfy specific requirements concerning the Electrical and Electronics Engineering.	2		
4	Having skills to develop, select and apply modern techniques and tools needed for Electrical and Electronics Engineering applications, skills to use information technology effectively.	2		
5	Skills to design and conduct tests, collect data, analyze results, and interpret data for the experimental investigation of Electrical and Electronics Engineering problems	4		
6	Ability to function effectively as an individual and as a member of teams within the discipline and in multidiscipline areas.	3		
7	To communicate and represent effectively in both Turkish and English.	2		
8	Recognition of the need for lifelong learning; ability to access information, to follow developments in science and technology, and to continue to educate him/herself.	1		
9	Understanding of professional and ethical responsibility.	1		
10	Information on project management, change management and risk management practices, awareness on entrepreneurship, innovation and sustainable development.	1		
11	Information about universal and societal effects of engineering applications on health, safety and environment; awareness of the legal consequences of engineering solutions.	2		

LECTUTER(S)						
Prepared by	Arş. Gör. Dr. Selçuk Temiz					
Signature(s)						

Date:06.06.2024